Drone Footage From Inside An Active Volcano!

Video Source: “Drones Sacrificed for Spectacular Volcano Video” uploaded by National Geographic to YouTube channel www.youtube.com/watch?v=zFIWWM0Iv-U

Big Holes

Get Your Mind Out The Gutter!

Whoever coined the title of this video is a genius: the second I clapped eyes on it, the inner depraved version of myself immediately demanded that I click on the link to find out more about Earth’s biggest and most mysterious holes. As it turned out, the video is quite interesting, albeit well-behaved. So, if you’re desperately trying to look busy and important while waiting for a date, or want to avoid that annoying dude from accounting during your lunch break, here’s a fabulous and educational 10 minutes well spent.

P.S. Donald Trump was accidentally omitted, but should have been featured as Earth’s biggest A-hole.

Video Source: “15 Strangest Holes On Earth” Uploaded by Planet Dolan to YouTube channel www.youtube.com/watch?v=pxSkbBXpMjo

How To Bake a Diamond

Beautiful diamond gem

Diamonds have been getting men out of trouble for hundreds of years. They have also been getting men into trouble for hundreds of years. So, what’s so special about diamonds? They’re really pretty, they’re really strong, they have a great pair of tits…

Sorry, that’s Lara Croft.

DIAMONDS are really pretty, they’re really strong and they’re really RARE. They are also the gemstone of choice when it comes to getting hitched because, just like Shirley Bassey sang, diamonds are forever.

Diamonds are Forever… No, Really, They Are!

Aside from their unparalleled resilience and durability, diamonds are spectacular-looking rock minerals. Cut into a complex and intricate array of facets and planes, their refractive light properties send out a kaleidoscope of colour which spans the visible light spectrum, even though the gem itself appears totally translucent and colourless.

What are diamonds? What are they made of? How are they formed?

Yeah, yeah… what you REALLY want to know is what it takes to bake your own diamond so that you can become super rich and super lazy just like Paris Hilton. Well, just like everything else on this planet and in our universe really, diamonds are made of tiny, tiny building blocks. A closer look into their crystal structure tells us just how these highly coveted stones are formed.

Diamond, which is derived from the ancient Greek word adámas, meaning ‘unbreakable,’ is made from one of the most common elements here on planet Earth. It’s in the soil we walk on, in the air we breathe and in the food we eat. Here’s another clue: you’re made from it.

Carbon!

Diamonds from black carbon

It’s the same black crap your science teacher created from burning sugar, the same black crap the graphite in your pencil is made of and the same black crap shown in the picture above. Oh, how unromantic!

Surely such a rare and highly prized stone would be constructed from something equally as exotic and just as rare? Alas, my friends. It is not the building blocks of diamonds that make these stones so special, but rather the conditions under which they are forged. It’s like baking a cake: at the right temperature and with the right cooking time, the cake will come out beautiful, spongy, moist and delicious. At the wrong temperature and cooking time, the same batter will come out black, bitter, inedible and more appropriately used as a bludgeoning weapon.

Carbon + Contaminant = Colour!

Colorful diamond array

We’ve established that diamonds are made from carbon. Actually, they’re made from a carbon allotrope, just so that you geology geeks don’t get a kick out of correcting me. But for all intents and purposes, diamonds are essentially made out of carbon. And carbon is abundant. So, theoretically, you should be able to make your own diamonds! Just don’t tell anybody about it or you could throw a major spanner in the traditional works and symbolism of marriage, just like those pesky homosexuals who want equal rights. I mean, who do they think they are?

Hold on a minute! All it takes is carbon? Then what gives some diamonds their colour? Well noted, my avaricious rapscallions! Diamonds don’t ONLY come as colourless, expensive globules of carbon. Interestingly enough, the unique and very rigid arrangement of carbon atoms in the crystal structure of a diamond (cubic to be exact) makes it difficult for other chemical elements to infiltrate it, causing impurities. This explains why the insides of most diamonds look so beautifully pure and translucent.

Most, but not all.

Diamond, actually, is quite snobby. It only allows very particular elements into its crystal lattice and then again, it only does this on the rare occasion. To give you an idea of just how fussy diamond is, it is estimated that for every million atoms of well-behaved carbon, there is a single alien atom infiltrator. The result: a fantastic analogy for opening your heart to different races, creeds, genders and nationalities.

And colour!

The colour of a diamond can have a huge influence on the amount wealthy housewives get their husbands to pay for them. Blues and greens are exceptionally rare, so they will fetch a high price. Yellows and browns are more common. And there’s nothing like a brown diamond to make you feel REAL special.

Now, gather your cooking implements and turn the oven on… HOT.

Hot temperature oven

Diamond Recipe

What You’ll Need:

  1. Carbon
  2. A choice of chemical impurity or radioactive element (for colour)
  3. Titanium metal
  4. A shovel
  5. Patience
  6. A degree in town planning

Step 1: Take carbon and mix in desired chemical impurity, or pilfer local science laboratory for radioactive element*.

* If you want to bake a blue diamond like the one Rose threw into the ocean at the end, you need to add boron to your mix of carbon. If you want to bake a yellow diamond, you’ll need nitrogen. If you want your diamond to turn a more exotic shade of purple, pink, red or orange, then make sure you bury it close to a radioactive element, such as plutonium or uranium. Other colours, such as black, brown and sometimes even red and pink are caused by structural flaws that harbour dark impurities that only make them appear the colour they are.

Step 2: Put ingredients into an air-tight and incredibly durable box.

Step 3: Phone NASA for left-over titanium to build said box. If you struggle to get past some power-tripping secretary, you can always melt down your brother’s professional tennis racquet; a legacy from the days he actually thought he’d be a professional at anything. If THAT fails, dental implants are made from titanium, but whatever you do, don’t get caught at the morgue.

Step 4: Bury carbon-filled box at a depth of between 140 and 190 kilometres, or 85 to 120 miles, where there exist conditions of immense pressure and temperature. An ambient temperature of at least 1,050 deg Celsius is what you’re aiming for.

Step 5: Bake for at least one billion years, but it could take as long as three billion years. This is where patience comes in handy.

Step 6: Wait for a super-deep volcanic eruption to bring the box of crystallized carbon to the near-surface of the Earth.

Step 7: Plant a flag at the location, build a town, exploit the native inhabitants as your labour force and dig a big hole in the ground to retrieve your creation.

Step 8: Allow to cool before eating.

Class Dismissed: Your Take-Home Message

Beautiful gem diamonds

It’s probably better to buy a diamond than make your own.

This aside, the next time you walk past a jewellery store or stare lovingly at your own engagement/wedding ring, you should look – really look – at the diamond. Know that the real beauty of these radiant gems transcends the price tag affixed to them. Diamonds are approximately half the age of the Earth, they will last your lifetime and millions more like yours and they’re composed of carbon, the very same building blocks as you and me.

The very same material that is forged in the hearts of dying stars.

Fire and Brimstone – the Story of Volcanoes

eruzione Etna volcano

Mount Etna eruption, Nicolosi Catania, Italy

There’s something beautiful about a woman’s rage (not counting the tarts from Geordie Shore) and in no better way is this sentiment illustrated than by Mother Nature’s ire. As terrifying as it is to be at ground zero, from a safe distance, natural disasters are incredibly awe-inspiring and angry volcanoes deserve a top spot for making people go “ooooh” and “aaaaah” and “oh shit…”

Volcanoes are literal pathways from the Earth’s fiery guts to its crusty exterior. But the channels available for the molten rock and gas that spew forth are far too narrow to satisfy the sheer volume of indigestion within and the result is an immense build-up of pressure. The release of this pressure includes, but is not limited to, violent sprays of lava, devastating pyroclastic flows, stratospheric columns of volcanic ash, electrical storms, scalding gas and dust and Hiroshima-type explosions that not only dislocate millions of tonnes of solid rock, but have been reported to be audible many thousands of kilometres away from the point of origin.

Vesuivio_Eruzione eruption volcano

Source: “Vesuivio Eruzione April 26th, 1872” by Giorgio Sommer – Own work. Licensed under Public Domain via Wikimedia Commons

Volcanoes have the potential to send species to extinction, yet at the very same time, they nourish the biosphere in an appreciable radius around them (volcanic ash is highly fertile). Volcanoes are magnificent and a wonderful example of how the surface of our planet is in a constant state of dynamism.

Where Not To Go On Summer Vacation

Planet tectonics plate diagram

Volcanoes typically form at the convergent and divergent boundaries between the enormous shifting tectonic plates that comprise the Earth’s crust (see gorgeous image above). It is here that the seams of the Earth permit plumes of its molten interior to travel towards the surface. But as it was mentioned, the surface-bound transport of this material is anything but a six-lane highway. It’s more like a gravelly, pothole-ridden country road. The gas and molten rock that are trying to get from A to B encounter rigid rock and the cracks they exploit along their journey are incredibly narrow. A build-up of pressure results in a potentially explosive situation, so that when something finally gives, the results are disastrous for the local biology: human habitation included.

Volcanoes also form over features called “hot spots”, which don’t necessarily occur near plate tectonic boundaries (see diagram below). The Hawaiian Islands – all of them formed by volcanic activity in the middle of the Pacific Plate – are a prime example of this.

volcanic-hot-spots

There are several scientific theories that seek to explain what hot spots are and a popular one is that they are upwelling intrusions of molten material (mantle plumes) that originate at the boundary between the Earth’s core and mantle. The exact depth of this varies, but the Hawaiian hot spot is estimated to be 3,000 km deep. That’s 9,842,520 ft. for those of you in ‘Merica.

Volcano Classification

There’s more to volcanology than your stock standard angry Earth pimple. Volcanoes come in many shapes, sizes and compositions. What happens at the surface – what we see and experience when volcanoes awake from their slumber – is dependent on a suite of factors and an especially important one is the composition of the magma that is trying to escape the lithified constraints of the crust.

Lava Composition

Lava flow in Hawaii

Rock that is rich in silicates tends to form chunky, viscous slow-moving magma. This subset of liquid rock is in no hurry to go anywhere and tends to contribute to terrible congestion. It also has the particularly nasty habit of trapping gas, which is why things can get explosive. Since Hawaii is no stranger to seismic activity, its inhabitants have coined a word for this particular magma and it’s pāhoehoe.

At the other end of the spectrum, you get magma that doesn’t contain a lot of silicates, but is rather rich in ferrous (iron) compounds. This magma – ʻAʻa, pronounced “ah ah” – get’s extremely hot and tends to flow hard and fast. If you’ll excuse the crass analogy, the difference between pāhoehoe and ʻAʻa is much like the difference between constipation and Delhi belly.

Both, however, are extremely uncomfortable.

Magma isn’t, of course, one or the other. There is a vast spectrum of mineral compositions between, but by understanding the difference between one extreme and the other, we can begin to understand how different kinds of volcanoes are formed.

Cone, Shield and Stratovolcanoes

If there’s one thing to be said for geologists, it’s that they don’t mess around with terminology. The name bestowed upon a volcano is as transparent as a wet T-shirt.

Cone (Cinder) Volcanoes

Bromo volcano in Indonesia

Mount Gunung Bromo (Indonesian island of Java): A classic cinder or cone volcano

Cone volcanoes, also known as cinder cones, generally consist of a hill that can be anywhere from 30 meters (98 ft.) to 400 (1,312 ft.) meters in height. Formed from the eruption of materials that are riddled with gas, crystals and a hodgepodge of fragmented rock. To see an example of this kind of volcano, put on your sombrero, crack open the tequila and get on a plane to New Mexico. There, you will find a spectacular volcanic field called Caja Del Rio, which comprises more than 60 cone volcanoes. If the prospect of New Mexico doesn’t appeal, you can always bum a lift on the next scientific mission to Mars or the moon, both of which are believed to feature this type of volcano.

Shield Volcanoes

Kohala-Landsat Hawaii shield volcano

Kohala Mountain, the oldest of Hawaii’s five volcanoes. The entire island is a massive shield volcano. Source: By USGS (source usage) via Wikimedia Commons

Shield volcanoes have a much broader profile than cone volcanoes and, as the name suggests, are shaped like shields. Bet you didn’t see that one coming. These beasts are formed from the eruption of very runny lava that tends to escape the Earth’s crust before causing too much mayhem as a result of a build-up of pressure. Shield volcanoes are, by comparison, the placid elderly aunt of volcanoes and are most commonly found at oceanic tectonic boundaries. Oceanic plates aren’t usually rich in silicates, which explains why the magma produced here is more felsic in composition, hence its lower viscosity. Skjaldbreiður in Iceland (say that three times fast) is an example of a shield volcano. The Hawaiian Islands, which have formed almost smack bang in the middle of the Pacific Plate over a “hot spot,” are also shield volcanoes.

Pyroclastic_flows_at_Mayon_Volcano

In June of 2013, the Mayon stratovolcano in Albay, Philippines, reached Level 1 alert level due to what the Philippine Institute of Volcanology and Seismology refers to as “abnormal behavior”.

Stratovolcanoes 

Stratovolcanoes, or composite volcanoes, are the tri-polar member of the volcanic family. They look like your typical volcano but actually consist of alternating layers of different kinds of erupted material as the above diagram depicts. Stratovolcanoes produce a range of eruptions depending upon their mood and these include chunky cinders, choking ash and molten rock (lava). One of the best known (and least loved) of these volcanoes is Mount Vesuvius, which is located in Stromboli, Italy. This one was responsible for the notorious levelling of the cities of Pompeii and Herculaneum in AD 79, killing 16,000 people. It is estimated that Mount Vesuvius released 100,000 times the energy liberated by the Hiroshima bomb.

Volcanic Hazards

Mount Pinatubo Explodes

Run? Source: “Point of View Photos” Huffington Post

When volcanoes become active, a number of things can happen, none of them good if you’re fond of life. One of the most devastating of these consequences is ash. You wouldn’t think so… ash is soft and white. How on Earth could it possibly inconvenience you the way a searing hot lake of lava might? Stratovolcanoes are especially fond of explosive eruptions, which send voluminous clouds of ash into the atmosphere and cascading down their slopes.

This ash, however, isn’t the kind you find in your barbeque pit after a night of camping, beer and sing-a-longs. It’s mixed with gas that is hot enough to disassociate your atoms. These eruptions send roiling clouds of gas, dust, ash and other debris down the mountain, which devastate anything organic in their path, leaving behind a scene that looks like a bomb went off in a cocaine factory.

Extinct, Dormant and Active Volcanoes: The Good, the Bad and the Ugly

Stromboli volcanic eruption3

Volcanoes are dangerous creatures. So an apt analogy for the popular classifications of these geological features would be your mother. When she has a gin and tonic in her hand (dormant), you may want to make plans for the evening. When she’s 10 G&T’s down (active), it’s time to execute those plans and get the hell out of the house. When she’s passed out on the couch (extinct), it’s safe to come home, although my recommendation to you would be to move out your childhood home and get yourself an education.

Extinct volcanoes, such as the Netherland’s Zuidwal and Shiprock volcanoes, are no longer considered to be active at all because they don’t have a supply of magma. They also have no documented history of indigestion. Dormant volcanoes, on the other hand, are known to have erupted at some stage in recent history. They may be quiet, but that doesn’t mean they can’t suddenly awaken. Mount Vesuvius (Gulf of Naples) was a purring kitten before it went psycho in AD 79, as was Mount Pinatubo (Philippines) prior to its epic tantrum in 1991. The latter is now considered an active volcano, which is one that has exhibited recent activity and is therefore a potential hazard to all within its vicinity.

Krakatoa

krakatoa-volcano-1883-eruption

If you’ve ever had a fight with Mexican food and lost (who hasn’t?) then integrating “Krakatoa” into your vocabulary is a wonderful idea if you need help explaining exactly what just happened to you to the flat mate who is next in line for the bathroom. You may not be absolved for your sins, but it’ll get you a laugh or two.

Krakatoa is a first class example of what happens when Mother Nature gets really cross and decides to let off a bomb that makes Hiroshima look like a fart. In 1883, the build-up of pressure under the Earth’s crust between the islands of Sumatra and Java in the Sunda Strait was so immense that it caused an apocalyptic-sized explosion, sending a once much bigger island into the stratosphere.

The Krakatoa eruption was reported to have been heard almost 5,000 km away (the loudest sound ever made in recorded history) and the resultant shock waves sent barograph needles oscillating violently off the page. Over 36,000 people were killed by the eruption: if not by the devastating pyroclastic flows and falling debris, then by the tsunamis that followed. The dust catapulted into the atmosphere caused stunning sunsets around the world for months after the eruption.

Too bad colour photography wasn’t in vogue in the 19th Century.

krakatoa - krakatau volcano map

Source: Krakatau Tour Website: A map of ex-Krakatoa and the now much smaller island of Anak Krakatau, which means “son of Krakatoa”. The dotted line represents the size of the island before it went nuclear.

Class Dismissed: Your Take-Home Message

If you ever needed to respect the fact that we are just not in control of our natural environment, then stand next to an active volcano. From lakes of lava and earthquakes that shake the foundations of your stick hut to falling debris and scalding hot pyroclastic flows that choke the biosphere, volcanoes are creatures to be respected, studied and understood. If ever there were an item to put on your bucket list, it would be to stand next to an active volcano and feel the heat of Earth’s exterior lap at your cheeks. Just make sure you’ve ticked off the rest of those bucket list items before you do so…

Mount Redoubt Eruption

“Mount Redoubt Eruption” by R. Clucas – Licensed under Public Domain via Wikimedia Commons. Mount Redoubt is a stratovolcano and is part of the very seismically active Aleutian Range in Alaska.

World’s LARGEST Cave Revealed

As awe-inspiring videos go, this is about as spell-binding as it gets. On the back of a drone, you weave your way through the world’s very largest cave, Hang Son Doong, which means “Mountain River Cave” in Vietnamese. This gorgeous cave is a yawning chasm within solid rock and, owing to the constant seepage of life-giving water into its belly, offers the local biology the most wonderful respite from the elements. As such and as you will see in this beautiful footage, life flourishes within the shelter of Hang Son Doong.

Keep an eye out for the people on the ground as the drone sweeps over the vast interior of the cave and you will develop a true appreciation of just how immense Hang Son Doong really is. If you want to see it for yourself, hop on a plane to Vietnam: Tân Trạch, Bố Trạch, Quảng Bình to be more precise.

Amazing Science Video Source: Photographer Ryan Deboodt as published by MSNBC on YouTube channel youtu.be/nzoLZoTqQa8

How Was It Formed?

Hang Son Doong is a solutional cave formed in the calcium-rich limestone of the Phone Nka-Ke Bang National Park. Over the eons, a weak acid formed from the mixture of water and carbon dioxide gas released by plants (carbonic acid) has slowly eaten away at the alkaline rock, carving out this gigantic chamber beneath the mountainside. Hang Son Doong now houses its own rushing river, some of the biggest stalagmites in the world (70 meters tall) and a natural inner chamber that is in excess of five kilometres (or 3.1 miles) in length!

vietnams-Hang-Son-Doong-cave...Giant_Stalagmites_in_Carlsbad_Big_Room

The 6 Most Awesome Rock Minerals (For Various Reasons), PART 1

Blue stone lapis lazuli macro

Geology is just one of the many scientific disciplines that have fascinated me over the years. As a teenager, I became fanatical about collecting rocks, rock minerals, crystals and fossils, every specimen of which I arranged fastidiously along the wall shelf that overlooked my desk (see photo below). I am proud to say that this extensive collection has been lovingly preserved in its original arrangement by my mother, starting with translucent colourless quartzite crystals, ranging right through the colours of the rainbow and ending with opaque, jet black fragments of obsidian. Dust and the occasional long-dead beetle aside, not a single rock has been discarded. They’re all there and they’re all special. I would like to extend a thank you to my mom for preserving my collection, although it wouldn’t hurt you to dust once in a while…

rock mineral collectionMy personal collection of rocks, rock minerals, crystals, coral and fossils.

Collecting Rocks is Not Just for Boring People

Why on Earth would anyone collect rocks? Well, rocks tell us about the history of the ground underneath our feet and you don’t need to be terribly nerdy to appreciate that! Unfortunately, too large a percentage of that ground has been covered in concrete, ceramic tile, plush carpets, hardwood or laminate (if you’re a cheapskate.) But beneath the man-made veneer of our planet lies a fabulous variety of rock types, minerals and crystals, each with a history, each with a unique set of properties, each comprising a piece of the puzzle that, once put together, tells the story of the formation of the Earth and how the land came to be shaped the way it is.

My deep interest in mineralogy and geology was and is about more than just the pretty appearance of certain rock minerals and crystals. It’s about their unique properties, characteristics and traits, a handful of which you will come to learn about in this two-part blog. Of the many rock minerals I have collected over the years and encountered during my University geology classes, there are some that have remained firmly lodged in my memory, just like pyroclasts in a volcanic breccia. These are the rock minerals that, in my mind, are true testaments to the sheer awesomeness of the natural world.

And the Nominees Are…

Firstly, in the interests of scientific rigor, let me stipulate the following: this list is totally subjective, so forget the part about “scientific rigor.” The facts I present, however, are true! Secondly, my choice is restricted to rock minerals or gemstones. Not rock types, such as marble, granite and shale. Minerals are the building blocks of rocks, just like desperate and marginally talented 20-something year old girls are the building blocks of girl groups.

Granite, for example, generally consists of three different rock minerals: Scary Spice, Baby Spice, Fanta Pants and one that looks like a lesbian. Hold on… I’m getting confused. That’s four spices.

Anyway, you get the point, so now that you know what a rock mineral is, let’s get to it! Get your De Beers on ‘cos we’re going digging!

Awesome Rock Mineral # 1: Iron Pyrite

gold (iron pyrite mineral)

AKA: Fool’s Gold

Chemical Composition: Iron and sulphur

Why it makes this list: Iron pyrite crystals are one of the most incredible demonstrations of symmetry in nature.

Name Origin: Pyrite originates from the Greek word for “fire”

We tend to think of nature as being random and chaotic, but rock crystals are a beautiful example of how there is more flawless pattern and symmetry in nature than there is entropy and disorder. Iron pyrite is one of my favourite examples, with its brassy yellow crystals that are seemingly impossibly square in shape. Pyrite frequently grows in great tangles of inter-grown geometric shapes, most commonly cubic and octahedral. The result is both incredibly beautiful and intriguing: something that could pass as the work of an abstract artist on acid.

Iron pyrite has been dubbed “fool’s gold” owing to its glistening metallic yellow colour, which makes it look quite similar to gold; one of the most coveted elements on Earth. There are many differences between pyrite and gold, of course, but the most important to mankind is that iron pyrite is appallingly common and is likely to get an icy reception from your wife or girlfriend if given as a gift.

Then again, Jessica Simpson is living proof that you can be appallingly common AND rich at the same time.

Awesome Rock Mineral # 2: Diamond

Beautiful diamond gem copy

AKA: A girl’s best friend.

Chemical Composition: Carbon and sometimes trace elements

Why it makes this list: Diamond doesn’t need an excuse to make this list.

Name Origin: Diamond comes from the Greek word adamas meaning “unconquerable” or “invincible.”

Diamond is the Chuck Norris of gemstones. It’s hard, it’s tough and it’ll charm the pants off any lady. Formed deep in the Earth’s crust under conditions of bone-pulverizing pressure and temperature, diamond is the hardest known substance in existence and it wins this title by a very, very, very large margin.

When cut correctly, diamond’s reflective and refractive properties emit a kaleidoscopic disco of light, coruscating with every colour of the rainbow. Uncut, diamonds are translucent and have an almost greasy or soapy lustre; certainly not something one might describe as breathtakingly beautiful. Most ladies prefer it cut. Their diamonds too.

A rough, uncut, brown diamond.

An uncut diamond, which just goes to show how important cut is to the aesthetic appeal of this gemstone.

In addition to their aesthetic appeal, which has been adored and worshipped by cultures and civilizations across the world for centuries, diamonds also have rather useful modern applications. Actually, 80% of all the diamonds unearthed are exploited for their incredible strength as blades, grinders, bearings and drill bits. The other 20% are considered too pretty to be used for drilling open rotten teeth and so they are square-cut and pear-shaped, these rocks don’t lose their shape DIAAAAMOOOOOONDS…

*ahem* sorry.

There are many things that make diamonds exceptionally awesome: they’re the only gemstone composed of a single element (carbon), they’re the hardest substance known to humankind, they’re incredibly beautiful and they’re incredibly expensive. But the bottom line really is that diamond’s awesomeness transcends time, culture, civilization and class. Diamond is king (and a giiiiiiiiiiiiirl’s beeeeeeeeest frieeeeeeeeeeend!)

Awesome Rock Mineral # 3: Fluorspar

natural fluorite stones

AKA: Fluorite

Chemical Composition: Calcium and Fluorine

Why it makes this list: For its, like, totally insane property known as thermoluminescence.

Name Origin: “Fluo” is the Latin word for “to flow.”

I first came across Fluorspar on a seven-day canoe trip down the Orange River, which is the natural border between South Africa and Namibia. On our fourth or fifth day, the guides pulled the canoes off the river onto Namibian shores and took the younger whipper-snappier of us on a gruelling 45-minute hike up the steep, boulder-strewn slopes. At the summit, we found an old abandoned fluorspar mine. There were just piles of this translucent green and purple mineral lying everywhere. So, we all filled our pockets and headed back down towards the camp.

That night, our chief guide showed us just why fluorspar was so damn cool. Onto the searing-hot coals that were the remainder of our nightly camp fire, he cast a handful of broken fluorspar shards and dust. After a few seconds, these rocks started to glow bright electric blue and green before shattering like popcorn into smaller fragments. In spite of the burning-hot bits of shrapnel that were sent whistling past our heads, we were enraptured by the performance and I have used fluorspar to impress girls ever since.

Unfortunately, I have run out of fluorspar.

Fortunately, I have my personality to fall back on.

Fluorescent Fluorite

Fluorite is the trance party-goer of the mineral world

Fluorspar or fluorite most commonly comes in cubic crystals, although the one’s we found on the Orange River had all been shattered or broken at some stage and so ranged in amorphous size. “Fluo” is the Latin word for “to flow” and this name was given to this rock mineral for its applications in iron smelting. In a peanut shell, fluorite decreases the viscosity of molten iron, helping it to flow better.

It was only after the discovery and naming of fluorite that its awesome physical properties of fluorescence and thermoluminescence were discovered, which is incidentally where the word “fluorescence” comes from. Fluorescence – the emittance of that strange otherworldly light – is caused by the dancing of electrons within the mineral’s atomic structure. As they stomp around to the doef-doef music in their heads, they emit quanta of visible light that is most frequently blue in colour, but can be green, white, red, purple or yellow.

Stay Tuned for Part 2…

You may be bored at work, but you still have to look busy or else your boss will give you the boot. To accommodate this, I have taken the liberty of dividing this post in two. Stay tuned for the second instalment in which we shall intrepidly explore the remaining three most awesome rock minerals!

In the meantime, your homework is to ‘ooh’ and ‘aah’ at this picture…

Lechuguilla_Chandelier_Ballroom

“Lechuguilla Chandelier Ballroom” (New Mexico) by Dave Bunnell. Licensed under CC BY-SA 2.5 via Wikimedia Commons. Giant otherworldly fingers of glittering gypsum crystal formations reach down from the cave ceiling.

Dynamic Planet Earth

earthquakes-by-magnitude-since-1898

Earth’s massive shifting tectonic plates are visible in this gorgeous diagram of our planet showing the location, intensity and frequency of earthquakes since 1898. The brighter the fluorescent green, the more seismically active the location. The Pacific plate, smack bang in the centre of this map, certainly prefers its martinis shaken and not stirred, with some of the biggest earthquakes in recorded history originating along its western boundary.

For more mind blowing maps that give you a real perspective on our planet, check out the following post on The Mind Unleashed

Plate Tectonics: The Ends (and Beginnings) of the Earth, PART 2

World's plate tectonics

Vector diagram indicating the Earth’s major tectonic plates, the boundaries between them and the direction of their motion. A vector is an arrow that physicists use to illustrate the direction AND relative speed of a moving body. I.e. the longer the arrow, the faster a plate moves.

Welcome back to this, the second instalment of our foray into the field of plate tectonics in which we seek to understand how the giant bumping and grinding shards of crust that make up the surface of our planet have helped to shape it, create it, destroy it and give Hollywood directors endless material for disaster movies. In Part 1, we began our journey with a look at convergent boundaries – where two tectonics plates come together causing a fender bender of such epic proportions that it has resulted in some of the highest (Himalayas) and deepest (Mariana’s Trench) topographical features on Earth.

We discussed the difference between continental collisions (where two continental plates crash into each other) and subduction zones (where one denser oceanic plate gets “pushed” underneath a lighter, crustier plate). Both are characterised by plates that are slowly, yet inexorably colliding into each other and both result in some totally awesome environmental features, such as soaring mountain ranges, plummeting ocean floors, city-shattering earthquakes and volcanoes with monstrous cases of indigestion.

explosive volcanic eruption

In this week’s blog, we’ll take a look at the other boundary types and what kind of geological party one might expect to find there…

2. Divergent Boundaries: When Two Plates Pull Apart

At the opposite end of a plate’s convergent boundary, one tends to find a divergent boundary. Here, the prodigious convection currents in the Earth’s asthenosphere (the squishy onion layer beneath the crusty lithosphere) serve to wrench the two plates apart. This exposes the bubbly mess of searing molten rock beneath. For the same reason you want to sew your butt cheeks together when you have a really bad case of “Delhi Belly”, this runny mess of lithic indigestion explodes out from between the plates causing all sort of fun for the neighbouring wildlife.

Plate tectonics, separation

Diagram illustrating what happens at a divergent pla…
Oh, Christ you’ve got eyes.

There are typically two geological features one finds at divergent plate boundaries and just as was the case with tectonic convergence, the resultant landscape depends very much on whether the plates pulling apart make up the continents or the ocean floor.

Mid-Oceanic Ridges 

mid-oceanic ridge

The Bold and Ridiculously defined Temporomandibularly Muscled

When the separation occurs between two oceanic plates, as is the case with the African and South American plate (in the southern Atlantic basin) and the Eurasian and North American plates (in the northern Atlantic basin), you get a mid-oceanic ridge, which doesn’t really look like Ronn Moss posing in the exquisite turquoise waters of some tropic paradise. No, mid-oceanic ridges are a lot bigger, a lot more ripped and far more complex, although perhaps not as emotionally so… and definitely not as annoyingly successful with the ladies.

mid-oceanic ridge tectonics

Whoar! Now that’s what I’m talking about! The Mid-Atlantic ridge in all its ripped glory. More fault lines than hairs on a manly Portuguese chest, more complex than your girlfriend at her best time of the month and more broodingly seismic than her temper after that fight you had when you commented on her Portuguese heritage.

Two plates can’t get away with divorce without some serious repercussions. For one, the divergent motion of the plates releases a whole lot of pressure on the underlying asthenosphere. It subsequently melts in relief, releasing a surface-bound flood of molten rock known as magma, or at least until it actually reaches the Earth’s surface, at which point it becomes known as lava.

Don’t ask me why geologists have to make things so complicated.

This lava cools and solidifies upon contact with the atmosphere or, in the case of mid-ocean ridges, the overlying water, forming blocky solid structures of igneous rock. Over time, the release of magma from the divergent motion of the plates forms wave after wave of new ground in a process referred to as “seafloor spreading”. This all explains why the age of the rock closest to a plate boundary is younger than the rock as little as 100 metres away! Cool, huh?

mid-oceanic ridge photo

Those bulbous rocky rocks are actually solidified magma (or lava) plumes, which have emerged from the depths of the central abyss.

Some of the attractions one might expect to see on a routine exploration of a mid-oceanic ridge include deep gorges and valleys and formidable submarine mountain ranges that are, in height, taller than Mount Everest. When you’re not “oohing” and “aahing” at the fantastic topography, you can “ugh” at the local wildlife.

pompeii-word-bristle-worms-alvinella-pompejana1

This sexy sock-face with nipples for eyes is actually a Deep-sea Pompeii worm, which typically hangs out near the hydrothermal vent chimneys found along marine divergent boundaries. This large sea squishy enjoys black smokers, long walks along the trench and its ambient environment close to boiling point. Hydrothermal Vent Eelpout fish, Giant Tubeworm and the Hydrothermal Squat Lobster are more examples of wildlife that find boiling water totally amenable. In fact, there is a whole community of specialised critters that have become adapted to life in close proximity to blistering, incandescent volcanic vents. 

Rift Valleys

When tectonic divergence occurs between two continental plates, rift valleys can form. East Africa provides us with a beautiful example of this in the shockingly named “East Africa Rift Valley.” I mean, how left field can you get? Here, the splitting apart of the Somalia and Arabian portion of the African plate has caused the ground to sink in a complex series of fault lines. The resultant synclines (fancy geology speak for “valley” or “dip”) can become filled with water, as is the case with Lake Malawi, Lake Tanganyika and Lake Victoria… some of the oldest, deepest and largest lakes in the world.

Lake Malawi_east african rift valley

A bird eye’s view of Lake Malawi: just one of the major bodies of water formed by the divergent motion of two Africa plates causing a physical cleft in the landscape.

“Hold on,” you say. You’ve referred back to the map of the world’s major tectonic plates and there isn’t a plate boundary anywhere near East Africa.

“How observant you are!” I exclaim saccharinely…

The Africa plate is in the process of splitting into two, like a giant amoeba or your mother’s personality when she drinks too much gin. The plate to the east of the Rift Valley is the Somali Plate and the one to the west is the Nubian or Arabian Plate (check out the diagram below). These two crusty offspring are referred to as “protoplates” or “subplates”.

east-african-rift-valley

What other exciting attractions do rift valleys have to offer us other than very old, very large and very deep lakes? Seismic activity of course, which includes all manner of fire, brimstone, earthquakes and highly specialized organisms that have adapted to the heat and the strange chemical environment found around aquatic volcanic vents.

3.    Transform Boundaries: Where Two Plates Rub Together

transform fault boundaryWe’ve looked at convergent and divergent plate boundaries, but what happens along the peripheries of the plate if the “front” is having a head-on collision and the “back” is being torn asunder?

If your guess was a great idea for a blue film, I commend you on your filthy mind. However, “transform fault” was more along the lines of what I looking for.

Transform boundaries are characterised by two plates grinding past each other. Since jagged rock rarely slides easily past jagged rock, this fault line tends to be the source of much rocking and rolling in the Earth’s crust. Every now and then – which is painfully slowly in geological time – one plate gets snagged on the other and they are brought to a strained halt. The pressure mounts as the one plate tries in vain to move on, but is held back emotionally by the other, until, in a sudden Earth-shattering shudder, they become unsnagged, sending the plates shooting past each other.

This is precisely why transform faults are notorious for causing earthquakes. One of the best-known examples of such a boundary is California’s San Andreas Fault (image below), which is currently – as we speak – being torn asunder by the divergent motion of the North American and Pacific plate.

San andreas transform fault

San Andreas transform fault, California

San Andreas fault is also testament to just how stupid humans can be… building a massive city on a fundamentally unstable Earth foundation is a disaster movie begging to be scripted and cast with slack-jawed hunky men and big-breasted, blue-eyed blondes. Although, if you are a film director and find yourself being inspired by this, please consider casting me as the clip-board wielding, surprisingly young, yet double PhD-educated science floozy! I may not have blonde hair, but you know what they say…

You can easily sleep with a blonde, but a brunette will keep you up all night long.

Mila Kunis is scientific evidence of this fact.

Mila Kunis

The disturbing reality about San Andreas fault is that it’s been 107 years since a major earthquake has occurred, which means that all these long years, the pressure between the plates has been building. Sure, there has been a smattering of decent earthquakes in between the 1906 San Francisco event and the present day – the most recent being the 6.0 magnitude Parkfield earthquake of 2004.

Don’t get me wrong, a 6.0 magnitude will leave your martini shaken and not stirred, but according to the latest Uniform California Earthquake Rupture Forecast (kind of like a weather forecast, but for earthquakes), California has a 99.7% chance of experiencing a larger than 6.7 magnitude earthquake in the next 30 years! I.e. you can bank on it.

It gets worse: the chance that this earthquake could achieve a magnitude of 7.5 or more is a frightening 46%. This may seem like a paltry percentage at first, but if your tandem buddy had to suddenly turned to you on a sky dive and tell you there was a 46% chance the parachute wouldn’t unfurl, you’d most definitely soil your undergarments. You can bank on that, too.

Could the next “Big One” finally send San Francisco into sliding into the sea? Is “Frisco” about to become the next city of Atlanta?

Who can say? Only time… and the underlying tectonic plates. Not Enya.

Massive damaging earthquakeClass Dismissed: Your Take-Home Message

Plate tectonics play an incredible large-scale role in shaping the surface of our planet. Of course there is a myriad of smaller scale (both spatially and temporally speaking) factors that mould the mountains you climb over, the oceans you swim across and the valleys you… bungee jump across?… to be with the one you love.

But, plate tectonics are the daddy of global scale change and transformation.

Be in awe!

Mila Kunis actress

So very in awe…

Plate Tectonics: The Ends (and Beginnings) of the Earth, Part 1

Earth from Space

Is it possible for something that’s spherical to have a physical end or beginning? A ball just keeps going on and on and on and on. No matter how many times you turn it, you never get to any definitive beginning or end. Where does an egg start and where does it end? With the chicken or the egg or the chicken or the egg or the chicken?

Chicken or the eggWell, in spite of its spherical shape, planet Earth has many beginnings and endings and they are found at the boundaries of the colossal shifting plates that comprise its surface! Plate tectonics account for many of the soaring and plummeting landscapes on our planet and it explains a host of our most frightening natural disasters, from spewing volcanoes to shuddering earthquakes. It builds beautiful fertile islands in the middle of vast ocean expanses while ripping the ocean floor apart elsewhere, forming trenches in excess of 10 kilometres deep. Understanding plate tectonics is key to understanding our planet and its dynamic surface, which, as stable as it seems under our feet, is in reality anything but. 

The Earth’s Surface is Divided into Plates

The Earth’s outermost crusty layer is known as the lithosphere (lithos meaning “stone” in Greek) and it can be likened to a giant shell that has been broken into large, rigid interlocking pieces (refer to the image below). These pieces sit upon the warmer and more malleable asthenosphere and basically bumble their time away by colliding into each other, pulling apart and rubbing against each other. They also, you know, support the entire biodiversity of planet Earth in their spare time.

Earth's plate tectonics

Meet Planet Earth’s tectonic plates: Americans and Canadians get the North American Plate, Europeans and Asians get the Eurasian Plate and the penguins get the Antarctic Plate… EVERYONE gets a plate!

The asthenosphere, which is fluid-like and warmer and more pliable than the outer crusty lithosphere, promotes the migration of the Earth’s tectonic plates. Prodigious convention currents of heat and molten magma travel from the bowels of the planet to its surface, compelling these giant puzzle pieces to move. Just like Tree Ents from “the Lord of the Rings” and the cogs in your brain after a heavy night out, these motions are frightfully slow. Some plate boundaries, such as the Mid-Atlantic Ridge, move as fast as your fingernails grow, which is approximately 1 to 4 cm per year. Doesn’t exactly make for riveting viewing, does it?

But over time, patience wins out against the resistance of solid rock and the results are as creative as they are destructive. 

The Three Plate Boundary Types

All of the plates that make up the lithosphere are in constant motion thanks to the giant hot and moist “visco-elastic” asthenosphere upon which they sit. Hot and moist. If you’ll refer back to the map above, you’ll notice that every plate fits snugly into another, much like a giant jigsaw puzzle. Since each plate is in constant motion, one can definitely assume that it’s where they meet – at the plate boundaries – where the party’s at.

The picture below shows us the direction of motion of each of Earth’s tectonic plates. At any given time, one periphery of a plate is wrenching away from another. At the opposite end of the plate, there is a violent collision going on, while the sides are causing iniquitous mayhem as they rub lasciviously against each other. And as the more, erm, experienced will know… friction leads to all sorts of seismic events.

Earth's plate tectonics 2

Map indicating the direction of motion of Earth’s tectonic plates. The red ‘teeth’ indicate where two plates are colliding, which, as we shall find out momentarily, has resulted in the formation of the magnificent Himalayan mountain range (continental collision) and Mariana’s trench (subduction zone). The first is home to the highest viewpoint on Earth (although you might kill yourself getting there) and the second, the very deepest point in Earth’s crust (although, again, you might kill yourself getting there). 

 1.    Convergent Boundaries: When Two Plates Collide

If you drove your car at the rate of fingernail growth into a brick wall, you would have no idea what would happen because you would have gotten out long ago to use the toilet and get married (probably in that order). But hypothetically speaking, in the absence of arseholes to use and arseholes to marry, you’d probably discover that nothing very much would happen in a collision between a brick wall and your car moving at the rate of fingernail growth. Why? Because you’re going too slowly!

BUT! Substitute your car with a billion tonne megalith and that brick wall would be cement dust in… oh a few million years or so!

The convergent boundaries of Earth’s plates result in the formation all sorts of interesting topographical features. Two colliding plates can either become a subduction zone (where one plate – usually the denser one – plummets beneath the other one), or it can become a collision zone. The plate boundaries that are home to continental soil tend to opt for the latter, while the plate boundaries that are home to ocean soil, the former.

Continental Collisions

Plate tectonics, collisionThe coolest example of a continental fender bender on Earth has got to be the Himalayan mountain range, which is home to the world’s highest, most hostile and most abundantly body-strewn slopes.  This formidable mountain range is the product of two continental tectonic plates (the Indian and Eurasian plate) crashing together and forcing each other to crumple and buckle into soaring mountain peaks and plummeting mountain valleys. There are more than 100 mountain peaks in the Himalayas that smash the 7,000 m (23,000 ft.) altitude mark. Mount Everest, the range’s and world’s largest mountain, comes in at 8,848 m… a staggering 29,029 ft. above sea level.

Himalayan Mountain RangeTypical and totally average view on a hike through the Himalayas

Subduction Zones

When two plates collide and the one happens to be heavier and denser than the other, it typically gets forced beneath the less dense plate. Imagine Paris Hilton gets into a fight with Natalie Portman. Who would come out on top? My vote would be on the substantially less dense (and Harvard degree-wielding) Miss Portman.

This kind of active plate boundary is known as a subduction zone and it can form deep-sea trenches that plunge for kilometres into the ocean floor, as well as yawningly vast abyssal plains that are home to a plethora of deep-sea squishies, only a fraction of which have had the pleasure of joining our taxonomy system. The remaining majority have not yet been discovered or named, although one did feature very briefly in the Pixar animated film, Finding Nemo.

Location of mariana trench map The vertical antithesis of the Himalayas is Mariana’s Trench, a deep gash in Earth’s crust in the Mid-Pacific, directly east of Southeast Asia (refer to the map above). Here, the Pacific plate smashes into the Philippine Sea Plate and the former, which is composed of denser, more metal-rich rock than the crusty, silty continental latter, gets forced downwards. There are examples of mid-ocean trenches all over the world, but at 11,000 m (36,070 ft.), Mariana’s Trench is the very deepest. Not even an inverted Mount Everest could fill this gash.

That is a huge gash. 

Marianas Trench depth reference

But wait, there’s more! One plate does not simply get sucked underneath another without the appropriate ceremony! Deep-sea trenches are very good and all, but we want fire and brimstone!

I’m so glad you asked…

The Ring of FIRE!

The ring of fire When one tectonic plate plummets beneath another, it faces the fiery wrath of the Earth’s immensely pressured mantle. This heat causes the hydrous (water-containing) minerals within the plate’s rock to release their moisture. Since water acts to lower the melting temperature, the mantle overlying the subducting plate melts (surprise!), sending plumes of magma towards the Earth’s surface.

Oceanic volcanism subduction These pockets of molten rock tend to become trapped underneath the crusty rock making up the lithosphere, where the pressure builds up. Eventually, all hell breaks loose and you get a volcanic eruption. This can occur either on the ocean floor or on land surface. Sub-aquatic volcanism tends to result in the formation of fiery, volcano-strewn islands, such as the Pacific Ring of Fire. Terrestrial volcanism tends to result in Pierce Brosnan being a hero and other awesome feats such as pyroclastic flows, earthquakes and village-bound lava lakes.

As long as the Earth’s tectonic plates are mobile, subduction will remain an ongoing process. The denser plate is continuously consumed by the continental plate, sending plume after plume of magma to the Earth’s surface, fuelling the ingoing wrath of these lithic pimples.

Stay Tuned for Part Two! 

Want to find out what happens when a billion billion tonne slab of rock rubs against another billion billion tonne slab of rock? Things get seismic.

Seismic events - Earthquake in Japan Stay tuned for next week’s blog instalment – Plate Tectonics: the Ends (and Beginnings) of the Earth, Part 2.